Have fun with sci.dog

配置keras并启用GPU运算

最近同事找了一个keras代码,要run下,今天配置了下环境。

  • Windows 11 专业版 21H2 22000.795
  • Quadro RTX 6000
  • NVCUDA64.dll 31.0.15.1694 NVDIA CUDA 11.7.101 driver
  • 显卡驱动版本:516.94

1、安装python

我这里用的是miniconda,创建了一个虚环境myann,python的版本是3.10.4

conda create -n myann
conda activate myann

2、切换镜像源到清华大学

编辑 C:\Users\用户\xxx\pip\pip.ini

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
trusted-host = https://pypi.tuna.tsinghua.edu.cn

3、安装相关包

pip install tensorflow
pip install scipy
pip install matplotlib
pip install obspy

这里安装的tensorflow的版本是2.9.1

这步后,程序已经运行,但启用的是cpu计算,要开启GPU,还需要继续配置。

安装文件如图所示

4、安装 NVIDIA GPU Computing Toolkit

CUDA Toolkit Archive | NVIDIA Developer

下载 CUDA ToolKit 11.7.1

ok后直接安装

5、安装cuDNN

cuDNN Archive | NVIDIA Developer

版本v8.4.0 for CUDA 11.x

解压到C:\tools\cuda

6、下载Zlib

Installation Guide :: NVIDIA Deep Learning cuDNN Documentation

这里只需要用到一个zlibwapi.dll,复制到C:\tools\cuda\bin

7、配置环境变量

8、OK,运行下试试

2022-08-04 17:42:23.619207: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-04 17:42:24.519418: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22178 MB memory:  -> device: 0, name: Quadro RTX 6000, pci bus id: 0000:2d:00.0, compute capability: 7.5
Deploying 0/3-th subcube
2022-08-04 17:42:30.775587: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8401
Deploying 1/3-th subcube
Deploying 2/3-th subcube

运行后,成功启用GPU计算,运行速度是CPU的10倍。

赞(0)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:《配置keras并启用GPU运算》
文章链接:https://www.sci.dog/?p=1296
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

评论 抢沙发